General instructions for Students: Whatever be the notes provided, everything must be copied in the Mathematics copy and then do the HOMEWORK in the same copy.

CLASS – VIII MATHEMATICS

13. UNDERSTANDING QUADRILATERALS

- * The sum of interior angles of a triangle is 180°
- * The sum of interior angles of a quadrilateral is 360°
- * The sum of all interior angles of n sided polygon = $(n-2) \times 180^{\circ}$
- * Each interior angle of a $n-sided regular polygon = \frac{(n-2)\times 180^{\circ}}{n}$
- * The number of diagonals of the polygon = $\frac{n(n-3)}{2}$, (n > 3)
- * The sum of exterior angles of a polygon = 360°
- * Each exterior angle of a regular polygon of $n-sides = \frac{360^{\circ}}{n}$
- * If each exterior angle of a regular polygon is x° then the no. of sides = $\frac{360^{\circ}}{x^{\circ}}$

3. Find the sum of measures of all interior angles of a polygon with number of sides 8.

Soln: Here, no. of sides = 8

The sum of all interior angles of n – sided polygon = $(n-2) \times 180^{\circ}$

=
$$(8-2) \times 180^{\circ}$$
 {: $n = 8$ }
= $6 \times 180^{\circ} = 1080^{\circ}$ Ans.

4. Find the number of sides of a regular polygon whose each exterior angle has a measure of $\,24^\circ$

 $\textit{Soln}: \ \textit{Here}, \ \textit{each exterior angle} \ (\textit{x}^{\circ}) = 24^{\circ}$

no. of sides =
$$\frac{360^{\circ}}{x^{\circ}} = \frac{360^{\circ}}{24^{\circ}} = 15$$
 Ans.

5. Find the number of sides of a regular polygon if each of its interior angle is 90°

Soln: Here, Each interior angle of a n – sided regular polygon = 90°

$$\Rightarrow \frac{(n-2)\times 180^{\circ}}{n} = 90^{\circ}$$

$$\Rightarrow 180^{\circ}n - 360^{\circ} = 90^{\circ}n \Rightarrow 180^{\circ}n - 90^{\circ}n = 360^{\circ}$$

$$\Rightarrow 90^{\circ}n = 360^{\circ}$$

$$\Rightarrow n = \frac{360^{\circ}}{90^{\circ}} \Rightarrow n = 4 \quad Ans$$

8. The angles of a pentagon are x° , $(x-10)^{\circ}$, $(x+20)^{\circ}$, $(2x-44)^{\circ}$ and

$$(2x-70)^{\circ}$$
. Calculate x

Soln: In pentagon, no. of sides = 5

The sum of all interior angles of $n-sided\ polygon=(n-2)\times 180^\circ$

=
$$(5-2) \times 180^{\circ}$$
 {: $n = 5$ }
= $3 \times 180^{\circ} = 540^{\circ}$

Now,
$$x^{\circ} + (x - 10)^{\circ} + (x + 20)^{\circ} + (2x - 44)^{\circ} + (2x - 70)^{\circ} = 540^{\circ}$$

$$\Rightarrow 7x - 104^{\circ} = 540^{\circ}$$

$$\Rightarrow 7x = 540^{\circ} + 104^{\circ}$$

$$\Rightarrow x = \frac{644^{\circ}}{7} \Rightarrow x = 92^{\circ} \quad Ans.$$

13.(i) In the adjoining figure, find x + y + z

Soln: : BAD is a straight line

$$\therefore \quad x + 90^{\circ} = 180^{\circ} \implies x = 90^{\circ}$$

· ACF is a straight line

$$\therefore y + 70^{\circ} = 180^{\circ} \implies y = 110^{\circ}$$

In
$$\triangle ABC$$
, $\angle A + \angle B + \angle C = 180^{\circ}$
 $\Rightarrow 90^{\circ} + \angle B + 70^{\circ} = 180^{\circ}$
 $\Rightarrow \angle B = 180^{\circ} - 160^{\circ} = 20^{\circ}$

[Angle sum prop. of a triangle]

· EBC is a straight line

$$\therefore z + 20^{\circ} = 180^{\circ} \implies z = 160^{\circ}$$

Now,
$$x + y + z = 90^{\circ} + 110^{\circ} + 160^{\circ}$$

$$\Rightarrow$$
 $x + y + z = 360^{\circ}$ Ans.

16. Each interior angle of a regular polygon is double of its exterior angle.

Find the number of sides in the polygon.

Soln: Let each exterior angle and interior angle be x° and $2x^{\circ}$ respectively.

According to question, $x^{\circ} + 2x^{\circ} = 180^{\circ}$

$$\Rightarrow$$
 3 x° = 180°

$$\Rightarrow$$
 $x^{\circ} = 60^{\circ}$

Now, no. of sides(n) = $\frac{360^{\circ}}{x^{\circ}}$

$$\Rightarrow$$
 no. of sides(n) = $\frac{360^{\circ}}{60^{\circ}}$ = 6 Ans.

HOMEWORK

EXERCISE - 13.1

QUESTION NUMBERS: 1, 2, 5, 7, 11,12(i)(iv), 13 and 14